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Abstract A procedure for failure probability cvaluation of composite laminates subjected to in
plane loads is proposed. The material properties. fiber angles and layer thicknesses of the laminates
are treated as random variables in the reliability analysis. The statistics of first-ply failure loads and
buckling strengths of the laminates are determined via the stochastic finite element method. Tlie
failure probabilities of the laminates which arc susceptible to buckling and first-ply failure are
computed using the statistics obtained in the stochastic finite element analysis. The feasibility and
accuracy of the present approach are validatcd using the results obtained via the Monte-Carlo
method. A number of examples of reliability analysis of composite laminates subject to in-plane
loads are given to illustrate the applications of the procedure. 1998 Elsevier Science Ltd.

I. INTRODUCTION

Laminated composite materials have become an important engineering material for the
construction of automobile, mechanical, space and marine structures in the past decade.
The use of laminated composite materials in designing these structures has resulted in a
significant increase in payload. weight reduction, speed, maneuverability and durability. In
pursuing these achievements, the reliability design of laminated composite structures has
thus become an important subject of research. A number of researchers have studied the
failure probability of composite laminates subjected to in-plane loads (Cederbaum e{ al.,
1990; Sun and Yamada, 1978). Cassenti (1984) investigated the failure probability and
probabilistic location of failure in composite beams based on the weakest-link hypothesis.
Kam and his associates (1992, 1993) and Engelstad and Reddy (1992) studied the reliability
of linear or nonlinear laminated composite plates subjected to transverse loads. In the
previous reliability analysis of composite laminates, only one failure mode, e.g. first-ply
failure or ultimate fracture, was considered. In this paper, a procedure is developed for
reliability analysis of laminated composite plates with random material properties and
uncertain stacking sequences subject to in-plane loads. Two failure modes, namely, buckling
and first-ply failure are considered in the reliability analysis. The stochastic finite element
method is used to obtain the statistics of buckling strength and first-ply failure load required
for reliability analysis. The reliability assessment of the laminated composite plates is
achieved using the strength statistics and the probability theories. The feasibility and
applications of the present procedure are demonstrated by means of examples of reliability
analysis of laminates subject to in-plane loads. Results obtained from the Monte-Carlo
method are used to validate the accuracy of the present procedure.
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2. UNCERTAINTIES IN COMPOSITE LAMINATES

A composite laminate is a stack of layers of fiber-reinforced laminae. The fiber
reinforced laminae are made of fibers and matrix, which are of two different materials. The
way in which the fibers and matrix materials are assembled to make a lamina, as well as
the layup and curing of laminae are complicated processes and may involve a lot of
uncertainty. Therefore, the material properties of a composite laminate are random in
nature. In the following stochastic finite element analysis, the elastic moduli (£J, £2, V12,

G 12 , G 13 , G23 ) of the material are treated as independent random variables, and their statistics
are used to predict the mechanical behavior of composite laminates. Furthermore, fiber
orientations and thicknesses of laminae may fluctuate in the vicinity of the prescribed
values, depending on the manufacturing process. It is, therefore, necessary and desirable to
investigate the effects of the uncertain stacking sequence on the reliability of composite
laminates. Herein, the fiber orientation, 0, and the thickness I, of each layer are also
considered to be random. The uncertainties of the stacking sequence can be expressed in
the following forms (Nakagiri el at., 1986):

0; = 8;{1 +w;)

1;=I;(1+IJ;) i=I,2, ... ,N

(I a)

(1 b)

where w; and IJ; stand for random variables for Oi and Ii' respectively: (); and I; are the mean
values of the variables 0; and I;, respectively; N is the number of layers. It is noted that
uncertain layer thickness can cause uncertainty in the z-coordinates of the layer boundary
and centroid.

From now on, rt. i (i = 1,2, ... ,2N+6) will be used to denote the basic random variables
in which rt. i (i = I, 2, ... ,N) denote the fiber orientations,rt.; (i = N + 1, ... ,2N) the layer
thicknesses, and rt.; (i = 2N + I, ... , 2N+6) the material properties £1, £2, V 12• Gil, G I3 and
Gl3 • respectively. The afore-mentioned uncertainties in mechanical properties and stacking
sequence of composite laminae can cause variations in the elements of the constitutive
matrix of the laminate.

3. STOCHASTIC FINITE ELEMENT ANALYSIS

The present stochastic finite element analysis of laminated composite plates consisting
of random parameters is based on the first-order shear deformation theory (Mindlin, 1951)
and the mean-centered second-order perturbation technique. Spatial variability is not
considered in the stochastic finite element formulation. The shear deformable finite element
developed by Kam and Chang (1992a. 1992b) is used in the finite element analysis. The
element can be applied to the analyses of both thin and thick plates, and it contains five
degrees-of-freedom (three displacements and two slopes. i.e. shear rotations) per node. In
evaluating the terms of element stiffness matrix, a quadratic element of the serendipity
family and the reduced integration are sued. The load-displacement relation of a laminated
composite plate can be expressed as

KD = P (2)

where K is the structural stiffness matrix, D the vector of nodal displacements, and P the
vector of nodal forces. Detailed derivation of the stochastic finite element method has been
reported in the literature (e.g. Kam and Lin, 1992). A brief review of the method is given
as follows.

Based on the mean-centered second-order perturbation technique, the stiffness matrix,
K is expanded in terms of the random variables rt.; (i = I, 2, ...• 2N+6), which represent
structural uncertainties existing in the plate. as
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(3)

where bai = aj-~j with ~j denoting the mean value of the random variable a,; M = 2N+6;
K(O) is the zeroth-order structural stiffness matrix, which is identical to the deterministic
structural matrix; K~I) is the first-order structural stiffness matrix with respect to random
variables a,; and K(j~) is the second-order structural stiffness matrix with respect to random
variables aj and ai' The nodal displacements are also influenced by the structural uncer
tainties and thus the displacement vector possesses a similar expression:

(4)

4. FIRST-PLY FAILURE LOAD

A composite laminate is assumed to fail when any ply in the laminate fails. Failure of
the laminate is determined from first-ply failure analysis in which the Tsai-Wu criterion is
adopted. If }'p is defined as the strength ratio, Tsai-Wu criterion (Tsai, 1980) expressed in
tensor form can be written as

(5)

where Fu' F, are functions of material strengths and (Jj are stresses in material directions. It
is noted that failure of the laminate occurs when the strength ratio of any ply, Ap , is less
than or equal to the applied load. Again the mean-centered second-order perturbation
technique and the stochastic finite element method can be used to find the statistics of
strength ratio from eqn (5). The mean and variance of the strength ratio are expressed as

(6)

and

(7)

The zeroth, first, and second-order strength ratios in the above equations can be determined
from the truncated Taylor series form of eqn (5) following the same procedure as described
in the previous section. It is noted that the layer that possesses the largest failure probability
is used to determine the statistics of the first-ply failure load of the laminate in the above
analysis.

5. BUCKLING STRENGTH

The deterministic approach to evaluate the buckling load of a composite laminate can
be found in the literature (Kam and Chang, 1992b). Herein, the effect of initial imperfections
is not considered in the buckling analysis. The buckling load of a laminate is determined
by solving the following eigenvalue problem:

(8)

where }"b is load multiplier and Kg is the geometrical stiffness matrix of the laminate subject
to edge loads of unit magnitude. The smallest value of the load multiplier is defined as the
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buckling strength of the laminate. The statistics of buckling strength can be determined
from the above equation via the mean-centered second-order perturbation technique and
the stochastic finite element method. The mean and variance of buckling strength are
expressed as

(9)

and

( 10)

6. RELIABILITY ANALYSIS

The reliability assessment of a composite structure, in general, requires information
on the probability distribution and not just on the statistical moments of the strength of
the structure. In the above stochastic finite element analysis of composite laminates,
however, only statistical moments of strength ratio and buckling load can be determined
while the types of probability distributions of the above strength variables are indeterminate.
Therefore, it is worth studying the effects of various probability distributions on laminate
reliability before any attempt to choose probability distribution types for the strength
variables is made. LetfAp(u) and j;b (v) be the probability density functions of strength ratio
and buckling load, respectively. For the deterministic applied load, Pc, the failure prob
abilities of the laminate subject to either first-ply failure or buckling are determined from
the following equations:

First-ply failure

(I I)

buckling failure

(12)

In the following analysis, three types of probability distributions, namely, normal, log
normal and Weibull distributions will be adopted in eqns (11) and (12) to evaluate the
failure probabilities of the laminates.

In case the two failure modes are dependent, the correlation between buckling strength
and first-ply failure load can be estimated from the covariance of Ap and ).b:

M H

COV[Ap , J.b] ~ L L Ap).b.j cov[ex;, exJ
;~ I j" I

(13)

where cov[·] denotes covariance. It is noted that if the basic random variables ex; are
independent, cov[ex;,exj ] = 0 when i =1= j and cov[ex;, exJ becomes the variance of ex i when i = j.
In the above equation both 1.1'.1 and Ab,i can be determined in the previous sections. The
coefficient of correlation for I,p and Ab is thus obtained as

(14)

where A denotes standard deviation. Herein, both Ap and Ab are assumed to be lognormal
variates. The joint probability density function of AT' and J.h is written as
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where X = In Ap and Y = In Ab • Define the probabilities of the following failure events as

and

f
Pc

P[Cd = P[laminate fails due to first-ply failure] = 0 fAp(U) du

f
Pc

P[C2 ] = P[laminate fails due to buckling] = 0 .f:Ju) duo

(l6a)

(l6b)

The reliability of the laminate subject to both first-ply failure and buckling is thus expressed
as

( 17)

where Ps is reliability; Pr is failure probability. The joint probability in eqn (17) is expressed
as

with

I IX I" [u2
-2PUV+V

2
]P[C] n C2 ] = ~-;=- ? exp - -'-~---2- dudv

2n~ I - P-- ex ex 2(1 - P )

InPe - E[ln Ab ]
v=-------
. A1ni'b

(l8a)

(18b)

The probability given by eqn (18) can be evaluated using the BNRDF routine of fMSL
mathematical package (1989).

7. EXPERIMENTAL INVESTIGATION

The probability distribution of laminate buckling strength was studied experimentally.
A number of Cr/Ep [00 /90)/0°/90"b square laminates of size I0 x 10 cm were subjected to
axial buckling test using a IO-ton fnstron testing machine. The top and bottom edges of
the laminates were clamped during test. The test procedure has been reported in the
literature (Kam and Chu, 1995). A typical load-stroke relation of the laminate is shown in
Fig. I. The test results were fitted by normal, Weibull or lognormal distributions as shown
in Figs 2-4. It is noted that lognormal distribution yields the best fit of the test data.
Therefore, it is reasonable to assume lognormal distribution for buckling load in reliability
analysis of laminates.

8. RESULTS AND DISCUSSION

The afore-mentioned stochastic finite element method (SFEM) and the reliability
evaluation technique are used to study the reliability of the angle-ply laminate in Fig. 5.
The statistics of the random parameters used in the analysis are listed in Table I. The
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laminate is subjected to uniform compressive edge load of 57 Ib in -1 in X-direction. The
mean first-ply failure or buckling loads of the laminate of constant mean thickness with
different layup patterns are shown in Fig. 6. It is noted that the number of ply groups has
a more significant effect on the mean buckling load than the mean first-ply failure load of
the laminate, and the first-ply failure load is much higher than the buckling load for fiber
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Table I. Statistics of material properties

Random
variable

Expected
value

Standard
deviation

Material
strength

Expected
value

------------------------------- ------- --~._---

19.2 X 10-6 psi
1.56 x 10 6 psi
0.82 x 10- 6 psi
0.82 x 10 -6 psi
0.49 x 10' psi

0.24
0.03 in

0.96 x 10 "psi
0.78x10 'psi
0.41 x 10 5 psi
0.41 x 10 5 psi

0.245 x 10 psi
0.012

0.003 in
1 orr

x,
Xc
Yj

Yc
R
S
T

219.5 x 10--3
246.0 x 10 1

6.350 x 10 ..1

6.350 x 10 .1

9.800 X 10- 1

12.60 x 10- 1

9.800x 10 1

*Subscripts T and C denote tension and compression, respectively; S is in-plane shear strength; R, Tarc transverse
shear strengths.
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Fig. 6. Expected values of buckling strength and first-ply failure load for laminates of constant

thicknesses with diJrerent tiber angles and numbers of layers.
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laminate with random material properties.

angle e, at less than about 40°. Irrespective of the number of ply groups, the primary failure
mode of the laminate is buckling for e< 40" if a deterministic approach is adopted. The
present SFEM and Monte-Carlo method (MCM) are used to study the coefficient of
variation of laminate strength. Figures 7 and 8 show the coefficients of variation for the
buckling and first-ply failure load of a [- BIB] laminate composed of different random
parameters. It is noted that the results obtained by the present SFEM closely match those
obtained by the MCM in which over 1000 data have been generated for each case. The
randomness of layer thickness has greater effects on the variation of laminate buckling
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Fig. 9. Failure probabilities of [- 20"/20c

/ - 20'i20'] laminate with random material properties of
different probability distribution types (CO.V. is 10%).

strength than that of first-ply failure load, as shown in Fig. 7. When the laminate is
composed of random materials, a fiber angle of around 45" may yield the largest variation
for buckling load and the smallest for first-ply failure load as shown in Fig. 8.

Next, consider the effects of the probability distribution types of strength ratio or
buckling load on failure probability of composite laminates. Herein, the two failure modes,
i.e. buckling and first-ply failure are assumed to be independent. The expected fiber angle
is set as either B = 20° or e= 60" for the [-B/B/-BjB) laminate. The statistics of the
random variables listed in Table I are again used in the reliability analysis. The Monte
Carlo method is first used to simulate the failure probabilities of the laminates composed
of random material properties, layer thickness or fiber angles and subjected to an edge load
of different magnitudes. The random variables are assumed to be of normal, lognormal or
Weibull distributions. Random number generators, RNMVN for normal or lognormal
variates and RNWIB for Weibull variates in IMSL mathematical package (1989), are
adopted in the Monte-Carlo simulation of the laminates. Over 1000 sets of simulation are
generated for normal or lognormal variates and 4000 for Weibull variates. An independence
check is performed for simulation involved with Weibull variates. The failure probabilities
of the laminates are also evaluated via the slochastic finite element method on the basis of
either eqn (II) or eqn (12) in which probability density functions of the strength ratio or
buckling load are assumed to be normal, lognormal or Weibull distributions. The failure
probabilities obtained via the above two approaches are shown in Figs 9-15 for comparison.
Figures 9 and 10 show the failure probabilities of the [- 20/20" / - 20'/20') laminate
with random material properties of different probability distributions and coefficients of
variation (C.O.V.). It is noted that the failurc probabilities obtained via the stochastic finite
element method closely match those via the Monte-Carlo method. The big gap between the
two failure probability curves in Figs 9 or 10 indicates that buckling is the major failure
mode of the laminate. For each failure mode. the clustering of the failure probability curves
predicted using different probability distribution types for the random material properties,
strength ratio or buckling strength indicatcs that the effects of the types of probability
distributions on the failure probabilities of the laminate are small. When comparing the
curves in Fig.9 with those in Fig. 10, it is noted that the increase in coefficients of variation
of material properties reduces the slopes of the failure probability curves. Similar phenom
enon can also be observed for the laminate composed of random layer thicknesses or fiber
angles as shown in Figs 11 and 12. Figures 13-15 show the failure probabilities of the
[- 60''/60''/ - 600 j600] laminate composed of various random parameters. Again, the failure
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probabilities predicted by MCM closely match those predicted by the SFEM and the
probability distribution types of the basic random parameters, strength ratio or buckling
load have small effects on the failure probabilities of the laminate. It is also noted that in
contrast to Figs 9, 11 and 12 the gaps between the buckling and first-ply failure probability
curves in Figs 13 and 15 are smalI and the curves of different failure modes in Fig. 14 even
cross over each other. This implies that both buckling and first-ply failure modes are
important for the laminates. The shapes of the curves also indicate that the variation of
buckling load is much larger than that of the first-ply failure load. Therefore, when con
sidering layer thicknesses as random variables (see Fig. 14), buckling dominates the failure
of the laminate for small load, but as load increases first-ply failure becomes more dominant.
In conclusion, the results presented in Figs 9-15 show that among the random parameters
the randomness of layer thickness has the greatest effect on the failure probability of the
angle ply laminates, probability distribution types of basic random parameters and laminate
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strengths have small effects on the failure probability of the laminates, and for small fiber
angle buckling dominates the failure of the laminates.

Finally, consider the reliability of angle-ply laminates with same thickness, but com
posed of different numbers of layer groups. The laminates are subjected to a uniform
compressive edge load of 57 Ib in -1 in X-direction. The reliabilities of the laminates with
various random parameters considering either single or multiple failure modes are shown
in Figs 16--19. Figures 16~18 show the reliabilities of the laminates considering either
buckling or first-ply failure. Figure 19 shows the reliabilities of the laminates with various
random parameters considering both buckling and first-ply failure. It is noted that buckling
dominates the reliability of the laminates irrespective of the type of random parameters
and number of layer groups considered in the analysis because the variation of buckling
strength is larger than that of first-ply failure load and the applied load is small. In general,
the increase in the number of layer groups will decrease the buckling failure probability,
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but, on the other hand, increase the first-ply failure probability of the laminate. Figure 20
shows the correlation between buckling and first-ply failure loads of a [- 0/0] laminate.
The results obtained by the SFEM closely match those obtained by the MeM. Buckling
load is perfectly correlated with first-ply failure load when only random layer thicknesses
are considered in the analysis. Buckling load may be negatively correlated with first-ply
failure load if fiber angles or material properties are random and mean fiber angles are
large (e.g. () > 40° for random material properties).

9. CONCLUSIONS

A procedure for reliability analysis of composite laminates with single or multiple
failure modes has been developed on the basis of the stochastic finite element method. The
accuracy of the stochastic finite element method in predicting statistics of buckling and
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first-ply failure loads has been verified by the Monte-Carlo method. The applications of
the proposed procedure have been demonstrated by means of the reliability predictions of
angle-ply laminates with different types of failure modes subject to in-plane edge loads. It
has been shown that the variations of ply thicknesses have the greatest effects on the
variations of laminate strengths as well as laminate reliability. Thus, tight control on ply
thickness variation is essential for achieving high reliability. Other important random
variables, such as applied loads, initial imperfections and lamina strengths, which were not
included in the present method should be considered in future studies.
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